Linux内核中使用的C语言技巧

下面是Linux内核中常常使用到的C语言技巧,比较实用,小伙伴们学起来!注意需要GCC编译器才支持这些特性。

typeof的使用

下面是我们常用的返回最大值宏定义,这个写法存在一些问题。

#define max(a,b) ((a) > (b) ? (a) : (b))

如果a传入i++,b传入j++,那么这个比较大小就会出错。例如:

#define max(a,b) ((a)>(b)?(a):(b))

int x = 1, y = 2;
printf("max=%d\n", max(x++, y++));
printf("x = %d, y = %d\n", x, y);

上面代码输出:max=2,x=2,y=4,结果是错误。为修改此宏,可以定义一个变量将a和b的值分别赋给该变量,并将该变量作为参数传递给max宏进行比较。在GNU C语言中,可以使用以下代码实现:

#define max(a,b) ({   \
    int _a = (a);   \ 
    int _b = (b);   \
    _a > _b ? _a : _b; })

如果不知道具体的数据类型,可以使用typeof类转换宏,Linux内核中的例子:

#define max(a, b) ({        \
    typeof(a) _a = (a);      \
    typeof(b) _b = (b);      \
    (void) (&_a == &_b);   \
    _a > _b ? _a : _b; })
  • typeof(a) _a = (a):定义一个a类型的变量_a,将a赋值给_a
  • typeof(b) _b = (b):定义一个b类型的变量_b,将b赋值给_b
  • (void) (&_a == &_b):判断两个数的类型是否相同,如果不相同,会抛出一个警告。因为a和b的类型不一样,其指针类型也会不一样,两个不一样的指针类型进行比较操作,会抛出警告。

typeof用法举例:

//typeof的参数可以是表达式或类型

//参数是类型
typeof(int *) a,b;//等价于:int *a,*b;

//参数是表达式
int foo();
typeof(foo()) var;//声明了int类型的var变量,因为表达式foo()是int类型的。由于表达式不会被执行,所以不会调用foo函数。

柔性数组

柔性数组,也称为零长数组,主要用于变长结构体。因此,它有时被称为变长数组。使用方法是在结构体的末尾声明一个长度为0的数组,从而使该结构体具有可变长度。对于编译器来说,长度为0的数组不占用空间,因为数组名本身只是一个偏移量,代表了一个不可修改的地址常量符号。

结构体中定义零长数组:

<mm/percpu.c>
struct pcpu_chunk {
    struct list_head  list;
    unsigned long    populated[];  /* 变长数组 */
};

数据结构最后一个元素被定义为零长度数组,不占结构体空间。这样,我们可以根据对象大小动态地分配结构的大小。

struct line {
    int length;
    char contents[0];
};

struct line *thisline = malloc(sizeof(struct line) + this_length);
thisline->length = this_length;

如上例所示,struct line数据结构定义了一个int length变量和一个变长数组contents[0],这个struct line数据结构的大小只包含int类型的大小,不包含contents的大小,也就是sizeof (struct line) = sizeof (int)

创建结构体对象时,可根据实际的需要指定这个可变长数组的长度,并分配相应的空间,如上述实例代码分配了this_length 字节的内存,并且可以通过contents[index]来访问第index个地址的数据。

case范围

GNU C语言支持指定一个case的范围作为一个标签,如:

case low ...high:
case 'A' ...'Z':

这里low到high表示一个区间范围,在ASCII字符代码中也非常有用。下面是Linux内核中的代码例子。

<arch/x86/platform/uv/tlb_uv.c>
    
static int local_atoi(const char *name){
    int val = 0;
    for (;; name++) {
        switch (*name) {
            case '0' ...'9':
                val = 10*val+(*name-'0');
                break;
            default:
                return val;
        }
    }
}

另外,还可以用整形数来表示范围,但是这里需要注意在“…”两边有空格,否则编译会出错。

<drivers/usb/gadget/udc/at91_udc.c>

static int at91sam9261_udc_init(struct at91_udc *udc){
    for (i = 0; i < NUM_ENDPOINTS; i++) {
        ep = &udc->ep[i];
        switch (i) {
            case 0:
                ep->maxpacket = 8;
                break;
            case 1 ... 3:
                ep->maxpacket = 64;
                break;
            case 4 ... 5:
                ep->maxpacket = 256;
                break;
        }
    }
}

标号元素

GNU C语言可以通过指定索引或结构体成员名来初始化,不必按照原来的固定顺序进行初始化。

结构体成员的初始化在 Linux 内核中经常使用,如在设备驱动中初始化file_operations数据结构:

<drivers/char/mem.c>
static const struct file_operations zero_fops = {
    .llseek      = zero_lseek,
    .read        = new_sync_read,
    .write       = write_zero,
    .read_iter     = read_iter_zero,
    .aio_write     = aio_write_zero,
    .mmap        = mmap_zero,
};

如上述代码中的zero_fops的成员llseek初始化为zero_lseek函数,read成员初始化为new_sync_read函数,依次类推。当file_operations数据结构的定义发生变化时,这种初始化方法依然能保证已知元素的正确性,对于未初始化成员的值为0或者NULL。

可变参数宏

在GNU C语言中,宏可以接受可变数目的参数,主要用在输出函数里。例如:

<include/linux/printk.h>
#define pr_debug(fmt, ...) \
dynamic_pr_debug(fmt, ##__VA_ARGS__)

“…”代表一个可以变化的参数表,“VA_ARGS”是编译器保留字段,预处理时把参数传递给宏。当宏的调用展开时,实际参数就传递给dynamic_pr_debug函数了。

UL 的使用

在Linux内核代码中,我们经常会看到一些数字的定义使用了UL后缀修饰。

数字常量会被隐形定义为int类型,两个int类型相加的结果可能会发生溢出。

因此使用UL强制把int类型数据转换为unsigned long类型,这是为了保证运算过程不会因为int的位数不同而导致溢出。

  • 1 :表示有符号整型数字1
  • UL:表示无符号长整型数字1